Matrix valued Jacobi polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-valued little q-Jacobi polynomials

Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the 2 × 2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Rodrigues formula, three-term recurrence relation and its relation to matrix-valued q-hypergeometric series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on the m...

متن کامل

A class of matrix-valued polynomials generalizing Jacobi polynomials

A hierarchy of matrix-valued polynomials which generalize the Jacobi polynomials is found. Defined by a Rodrigues formula, they are also products of a sequence of differential operators. Each class of polynomials is complete, satisfies a two-step recurrence relation, integral inter-relations, and quasi-orthogonality relations. 1. Motivation The understanding of matrix-valued orthogonal polynomi...

متن کامل

Multivariable Construction of Extended Jacobi Matrix Polynomials

The main aim of this paper is to construct a multivariable extension with the help of the extended Jacobi matrix polynomials (EJMPs). Generating matrix functions and recurrence relations satisfied by these multivariable matrix polynomials are derived. Furthermore, general families of multilinear and multilateral generating matrix functions are obtained and their applications are presented.

متن کامل

Inverse spectral analysis for finite matrix-valued Jacobi operators

Consider the Jacobi operators J given by (J y)n = anyn+1+bnyn+a∗n−1yn−1, yn ∈ C (here y0 = yp+1 = 0), where bn = b ∗ n and an : det an 6= 0 are the sequences of m × m matrices, n = 1, .., p. We study two cases: (i) an = a∗n > 0; (ii) an is a lower triangular matrix with real positive entries on the diagonal (the matrix J is (2m+1)-band mp×mp matrix with positive entries on the first and the las...

متن کامل

Upward Extension of the Jacobi Matrix for Orthogonal Polynomials

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrix r new rows and columns, so that the original Jacobi matrix is shifted downward. The r new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2003

ISSN: 0007-4497

DOI: 10.1016/s0007-4497(03)00009-5